N89-16333

DEVELOPMENT OF AN ADA* PACKAGE LIBRARY

Dr. Bruce Burton and Mr. Michael Broido

Intermetrics, Inc.
Aerospace Systems Group
5312 Bolsa Ave
Huntington Beach, California 92649

ABSTRACT

A usable prototype Ada
package library has been
developed and is currently
being evaluated for use in
large software development
efforts. The library system
is comprised of an Ada-orien-
ted design language used to
facilitate the collection of
reuse information, a rela-
tional data base to store
reuse information, a set of
reusable Ada components and
tools, and a set of guidelines
governing the system's use.
The prototyping exercise is
discussed and the lessons
learned are presented. Our
experiences in developing the
prototype library and lessons
learned from it have 1led to
the definition of a compre-
hensive tool set to facilitate
software reuse.

* Ada is a trademark of the

U.S. Department of Defense
(AJPO) .

E.1.3.1

INTRODUCTION

With the rising demand
for cost-effective production
of software, software reuse
has become increasingly
important as a potential
solution to low programmer
productivity. In the Ada
programming language, explicit
support is provided for
software reuse through the
"package"™ and "generic"
language features. Unfortu-
nately, the concept of Ada
software reuse is not a
panacea for our current
software productivity prob-
lems. The notion of software
reuse has been popular for
decades. But implementing
high degrees of reuse has
usually failed, with the
exception of some efforts in
fairly narrow areas (business
and compiler applications).
The challenge then, is to
recognize the contributions
that the Ada language can make
to a software reuse effort
while at the same time
identifying and resolving

language-independent problems.
Based on the promise of the
Ada programming language we
undertook the development of a
prototype Ada package library.

The prototyping exercise
included:

o' an examination of the
reasons for low software
reuse in the past,

o identification of
activities and tools
which would support a
reuse methodology that
spans the software
development life-cycle
from requirements through
maintenance,

o the development of a
phased implementation
plan for software reuse
that defines a develop-
ment path from prototype
to an operational,
multi-company, geograph-
ically distributed
system,

o development of a proto-
type for that method-
ology,

o the development, acqui-
sition, and evaluation of
representative package
entries, and

o an examination of user
interface techniques that
could be used to maximize
communications between a
reuse system and its
users.

E.1.3.2

BACKGROUND

As discussed above,
software reuse is not a new
concept. Significant efforts
have been underway since the
early 1960's to improve
software development produc-
tivity through reuse (consider
the early observations of
McIlroy about the benefits of
reuse presented at the NATO
Software Engineering meeting
in Garmish in 196 8)
[STANDISH83}. An analysis of
the problems attending reuse

_has led to the identification

of several potential hindran-
ces to reuse [STANDISHS83,
BROIDO85]. These impediments
to reuse can be categorized as
technical, economic, and
political obstructions. Some
typical problems that hinder
reuse include:

o lack of universal
standards for component
composition, level of
documentation, coding
techniques, testing,
etc.,

o difficulty in transfer-
ring an understanding of
the purpose of a software
routine from the author
to the potential reuser,

o higher initial develop-
ment costs and longer
schedules,

o risk management issues
such as warranty,
liability, and account-
ability,

ORIGINAL PAGE 1S
OF POOR QUALITY

o the "not invented here"
syndrome, and

o the lack of pride
typically exhibited when
reuse has been selected
in a software development
project over original
development.

While the problems
impeding reuse are signi-
ficant, the large size and
cost of a major software
development effort provides
substantial motivation to
improve productivity through
reuse. Although Ada provides
a natural vehicle for encour-
aging software engineering
reuse, the same technical and
political obstructions that
have limited reuse in the past
are likely to once again
impede the sharing of software
engineering products across
projects. The Software
Technology Department within
Intermetrics is actively
investigating the problems
that hinder reuse. We are
determined to find solutions
to these problems and to
collect and reuse Ada pack-
ages.

APPROACH

Along these lines, we
have defined a phased approach
to the development of a
reusable package library
suitable for use on large Ada
applications projects. Rather
than define an elaborate reuse
facility and implement the
library in a single step, we
are currently prototyping
parts of this facility to
investigate the potential

E.1.3.3

PR ——
BYRON AAW
ADA TEMPLATE DATA
PACKAGES
UNITNAME:
ommgie PREDEFNED OATATBASE
AUTHOR: REPOATS ENTR
john doe

Enter / DATABASE
hoyword © (M)
search for.
‘“"B 1) ADO
®) BT

Figure 1. Reuse process
overview,.

utility of our approach. A
complete description of this
phased development plan is
offered in [BURTONS85]. The
initial effort on this project
has been focused on the
creation of an Ada Software
CATalog (ASCAT).

An overview of the ASCAT
portion of the Ada package
reuse system is shown in
Figure 1. The system has begn
implemented using Byron ,
Intermetrics' Ada-based
program design language, and a
commercial relational database
management system. Central to
the system is the ability of
Byron to support definition
and use o0of user-defined
keywords.

Software Classification and
Data Element Selection

One key to the success of

any reuse scheme is the types
of classifications assigned to
entries. The primary purpose
of these classifications is to
facilitate retrieval, but they
may also be used to assist in
defining storage strategies as
well.

Selecting the classifi-
cations to be used is really a
subset of a larger
question: what data elements
do we want to be able to
retrieve about a particular
entry? The list of storable
elements seems in our opinion
to be highly influenced by the
size of the library (number of
program units stored) and the
degree of cooperation (or
potential antagonism) among
the users of the library. An
initial cut at such a list was
prepared [BROIDO85] from the
perspective of our ultimate
(multiple sites, multiple
organizations, multiple usage
types) system. Over 60 items
which could potentially affect
the suitability of an entry
were named in seven major
categories: identification (3
items), description (16
items), component parts (20),
environment/usage (9),
ordering information (7), "and
revision history (l11). Even
at this length, we recognize
that there are undoubtedly
many other items which could
be added.

This list was far too
large for our prototype, so we
examined the context in which

Byron is a trademark of
Intermetrics, Inc.

E.1.3.4

the prototype would operate.
We characterized our initial
environment as follows:

o All the users would be
from the same company,
although there would be
several divisions using
the common 1library.
Thus, no restrictions on
access would need to be
supported.

o All initial entries would
be written (when pos-
sible) in machine-inde-
pendent Ada, so the
compilation and execution
environments would be
well-defined.

(o] Source code would always
be available, so users
could do their own
tailoring (no "black
boxes"). Support in the
form of corrections and
training (other than by
reading the source code)
would not be provided.

o Emphasis was centered
around the collection of
reusable Ada packages
rather than complete
programs, Two factors
influenced this deci-
sion., The first is that
most of the packages we
wanted to include already
existed prior to the
start of our efforts, and
coherent design documents
were not always avail-
able. The second factor
was the widely distinct
set of users we were
addressing; they do not
share the commonality of
purpose which makes

domain analysis an
effective top-down
approach. The decision
to center our design on
packages enabled us to
define a standard header
for each package, based
on the requirements of
our Byron program
product. Formalized
requirements and design
documentation were not
required.

This decision causes the
library to be more
supportive of "bottom up"”
software construction
techniques than most of
today's top-down
methods. The top-down
methods reflect an
attitude of defining what
would be a perfect system
and do not adequately
recognize the influence
of existing tools
(including code) should
have on requirements
formulation in the
presence of real cost
constraints. (Note that
the "object oriented
design" strategies that
are emerging with Ada
reflect a tendency away
from strict top-down
methods.)

No a priori naming
conventions were esta-
blished, although an
informal guideline was
prompted by the technical
monitor of one of the
contributing programs.

Configuration management
was not rigidly enforced,
except within the rules

E.1.3.5

imposed by Ada. In
particular, no computer-
ized list of outstanding
users (people or pro-
grams) of the library
routines was maintained.

The programs which were
intending to take
advantage of the library
provided no explicit
funding for tool support
or to ensure that any new
packages created were
generalized and otherwise
suitable for future
reuse. Package headers
and other programmer-
supplied information had
to be easy (in both time
and difficulty) for the
programmers to supply.

Various standards were
established for the data
items we would collect.
Since we were attempting
to catalog packages which
had been previously

created to support
several different
projects, It was
necessary to retrofit

many of the selected
packages to include the
required Byron comments.
Part of our evaluation
will be to try to
identify the difficulties
caused by "loose"
definitions of essen-
tially narrative fields
(e.g., overviews). 1In
addition, no common
methodology had been
established, so the
degree of formality and
the list of available
support items (repeatable
test cases, previous

sample output, user
documentation, etc.) also
varied considerably.

We filtered the original
list down to the following
data items for the database
(others, such as the calling
conventions and parameters,
would be available from the
source code if not given in
the overview):

1. Unit name

2. Author

3. Unit size

4. Source language

5. Date created

6. Date last updated

7. Category code (see
below)

8. Overview

9. Algorithm descrip-
tion

10. Errors/exceptions
generated

l1l1. Up to 5 keywords
{for retrieval)

12. Machine dependencies

(if any)

13. Program dependencies
(if any)

14. Notes

Our retrieval strategy
was based upon a combination
of two alternate mechanisms.
The first mechanism was the
assignment of a hierarchical
category code, with the
hierarchy defined ahead of
time and changeable only at
well separated time inter-
vals. This scheme is similar
in concept to the ones used by
Computing Reviews [ACM85] and
the IMSL library [IMSL76].
But it was necessary to invent
our own classification scheme
since neither of those two was

suitable to our purposes. Our
scheme has the advantage that
everyone knows what the codes
are and can use an effectively
finite procedure for searching
the entries. Disadvantages
include a growing 1list of
vastly dissimilar "miscel-
laneous" entries and the
inability of the original
hierarchy designers to provide
sufficiently discriminatory
categories to provide effec-
tive retrieval (not too many
or too few candidates).

For the second mechanism,
we allowed the submitters to
supply up to five keywords to
be associated with each
package. These keywords are
not associated (as implicitly
occurs within the hierarchy of
categories), allow for
overlapping topics (the
packages do not conveniently
fall into strict tree classi-
fications), and can grow
(without reprogramming or an
all-knowing database adminis-
trator) with the needs of the
projects they are created
for. A scheme similar to this
has been employed on NASA's
COSMIC (Computer Software
Management Information Center)
system on complete programs,
although the keywords allowed
are suggested by the program
authors and filtered by an
acceptance team.

One of the authors is a
member of the Applications
Panel of the Department of
Defense's Software Technology
for Adaptable, Reliable
Systems (STARS) Program. An
important open issue sur-
rounding the formation of a

E.1.3.6

ORIGINAL PAGE IS
OF POOR QUALITY

potential Ada package library
to be available as GFE
materials for DoD contracts is
defining the quality of the
entries. On the one hand,
some people advocate including
only items of the highest
quality, with full DoD
standard documentation and
even formal independent
validation and verification
(IV&V) required on new
entries. Others prefer to let
a more flexible scheme apply,
with a "trust level" associ-
ated with entries. This
latter scheme encourages
"promotion" of existing
entries from "buyer beware" to
higher trust levels; after
all, using informally quali-
fied designs and code and then
adding formal testing and
documentation can still take
less time (and often risk)
than inventing from scratch.
For the prototype, we decided
to let all submitted entries
be accepted and then evaluate
the impact of this decision.

Reuse Information Extraction

Mechanism

Another critical phase in
the development of an Ada
package library involves the
extraction mechanism used to
collect reuse-oriented
information. The extraction
mechanism utilized in an Ada
package library must even-
tually provide several
different capabilities to
insure efficient operation.
These required capabilities
include:

support for automatic
data collection,

o

E.1.

3.7

o support for insuring
standardization of data
entries,

o support for assuring
continuity and consis-
tency of reuse infor-
mation across the
Software Development Life
Cycle (SDLC),

o support for checking
completeness and reason-
ableness (e.g., dates),
and

0o support for reuse

information examination.

The reuse information
extraction approach utilized
in our Ada package library 1is
detailed in Figure 2. An
analysis of this figure
reveals that each of the
elements previously identified
for data collection has been
mapped into predefined or
user—-defined keywords for the
Byron design tool. A Byron
template program was subse-
quently developed to autom-
atically extract the
reuse-oriented information.
This information is placed
into a file that can be
directly processed into the
ASCAT data base.

{procedure 00
.I.ﬂﬁ. - oxampe
"G | —— — || 20
—f category: oo
tost tost
ond example; oe
ADA BYRON RAW
PACKAGES TEMPLATE DATA
Figure 2. Extraction mechanism

overview

T h e u s e o f a
Byron-oriented reuse infor-
mation extraction mechanism
provides most of the required
capabilities enumerated
above. This approach provides
a means for automatic col-
lection of data standardized
in field name and format.
Since the Byron design file is
intended to transition into
the implementation with reuse
data intact, support is
offered to assure information
continuity across multiple
phases of the SDLC.

While this extraction
approach has many positive
features, it is not without
its shortcomings. The lack of
predefined reuse attributes
within Byron fails to support
direct examination of reuse
data items for completeness,
consistency, and reason-
ableness. The inclusion of
reuse-oriented information
into the Byron-produced
program library represents a
simple potential improvement
to our approach that could aid
in the examination of the
reuse data items.

Software Catalog Implemen-
tation

The software catalog for
the reusable package library
was implemented through the
use of a commercial relational
data base management package.
The data definition capability
used for field definition and
the built-in data base
programming language facili-
tated the examination of reuse
data for limited correctness
and consistency checking. The

E.1.3.8

use of a data base also aided
in the rapid development of an
interface between the software
catalog and potential Ada
package users through the
utilization of predefined
reports and support for ad hoc
user queries. Nonetheless,
the user interface represents
a weak link in our prototype
package library. The present
interface is very limited in
the sense that it offers no
context-specific support for
communication between the
reuse system and its users.

The present software
catalog is limited in its
interaction with the user.
For example, consider the
scenario of a software
engineer performing an
application software design of
a routine that requires a
sorting package. In the
present system, the software
engineer would need to: 1)
exit the editor, 2) enter the
software catalog data base
system, 3) enter a query to
identify the available sorting
packages, 4) select the
desired package, and 5)
re-enter the editor and issue
the necessary commands to draw
the desired package (design/-
code) into the applications
program design.

This initial prototype
software catalog can readily
be improved to enhance the way
in which it interacts with
user. In Figure 3, the
present mode of interaction is
depicted. In Figure 4,
another potential scenario is
shown. In this scenario, a
multi-window environment

ORIGINAL PAGE I5
OF POOR QUALITY

is used where the user may
perform the software catalog
inquiry and concurrently
examine several promising
packages without exiting the
editor.

A third possible opera-
tional scenario of the
software catalog is not
pictured. In this third
approach, the data base query
language would be replaced by
a natural language front-end,
the software catalog search
would be assisted by an expert
system, and the multi-window

A sorting routine is
QUi Exit the

editor. invoke the
ASCAT data bese

system and enter
appropnate query.

Current ASCAT
operational
scenario

Figure 3.

approach would be supported by
a language- and context-sensi-
tive editor. The third
approach is feasible with
investigation into its
implementation occurring in
several current projects

E.1.3.9

[ANDERSONS85] .

Intermetrics is currently
investigating the implemen-
tation of this third app-
roach. We are integrating a
commercial natural language
language front-end on our
reuse database and are
designing an expert system to
facilitate evaluation and
selection of alternative Ada
packages. Although it is
premature for significant
conclusions on our expert
system efforts, we have made
several observations about the
advantages and disadvantages
of the Natural Language
Front-End (NLFE).

Our preliminary findings
on the NLFE are not surpri-
sing. As expected, we found
the NLFE to be significantly
easier to use than the
traditional database query
language supplied with our
DBMS. On the negative side,
we found that the natural
language interface was
substantially slower than our
traditional database query
language. Our initial figures
show a performance penalty
associated with the NLFE which
ranged from a factor of five
for relatively simple queries
to a factor of ten for fairly
complex queries.

Our preliminary query compo-
sition comparisons and initial
performance evaluations show
that the NLFE approach is a
viable alternative to tradi-
tional database query lang-
uages. We are currently
addressing the performance
issues that plague the NLFE

ORIGINAL PAGE 1S
OF POOR QUALITY

Figure 4. Improved ASCAT operational scenario

approach. We feel that the
application of NLFE and expert
system technology to the
software library area will
significantly simplify the
operation of a software
library and substantially
improve the productivity of
the software library users.

LESSONS LEARNED

The development, collec-
tion, evaluation, and catalog-
ing of reusable components and
tools undertaken in the
development of an Ada package
library has led to some
interesting observations
concerning Ada package reuse.
Unfortunately, we do not yet
have enough experience to
evaluate the selected category
scheme, keyword retrieval

E.1.3.10

capability, or the 1list of
collected data elements.

During the past year, we
have developed a set of test
and analysis tools written in
Ada and intended for Ada
software development
efforts. The fixed-price
nature of this contract and
the fact that it represented
the first major Ada develop-
ment contract within our
division motivated us to
emphasize reuse of existing
Ada packages as a cost and
risk reduction measure. Based
on the results of that
contract, we found that reuse
of existing generic support
packages significantly
improved our productivity,
with over 33% of the code
comprised of reused packages.

On the negative side, we
found that several of the
tools initially exhibited poor
performance. In almost every
instance, we found the general
nature of the reused packages
to contribute heavily to the
performance problems. We also
found that the generic Ada
packages offered much more
functionality than required in
our application. The extra
functionality resulted in a
size penalty with respect to
the executable code. The use
of a performance analyzer and
tailoring of the reused code
for the current application
substantially improved tool
performance [RATHGEBERS86].

We also studied the
problem of composing reusable
applications packages from
existing reusable
components. As part of an Air
Force study, we compared the
performance of two different
implementations of reusable
Kalman filter routines. One of
the routines was written in
Ada; generic Ada mathematics
packages were heavily used in
its development., The other
routine was written in FORTRAN
and specifically designed to
solve a specific Kalman filter
problem. A performance
comparison of the generalized
Ada package against the
custom-tailored FORTRAN
routines showed the FORTRAN
routine to exhibit significant
speed advantages over its Ada
counterpart. This performance
difference is probably due to
the relative immaturity of the
Ada compiler used in this
study and also to the general-
ized nature of the Ada

E.1.3.11

packages. An important
conclusion of the study is
that the performance problems
associated with including a
generalized reusable Ada
package into an applications
program are substantially
compounded when an entire
system is comprised of
reusable components which also
consist of reusable compo-
nents.

Although many of our
lessons learned have negative
implications for the use of
Ada reusable packages, there
is some light at the end of
the tunnel. Reuse was a big
aid in increasing our produc-
tivity in the development of
Ada test and analysis tools.
We also found that reuse can
be successfully employed in
the development of efficient
Ada systems if sufficient
thought is put into how the
packages are to be reused and
if the proper tools are
available (e.g., such as a
performance analyzer).

CONCLUSIONS

In accordance with our
previous plan, we have
completed a prototype mech-
anism for extracting reuse
information from packages
developed in the normal course
of business. We also have a
primitive mechanism for
entering that data in a
catalog and searching the
catalog for entries that are
potentially useful on new
projects. The approach
centers on the design and
implementation phases, since
these are the ones to which

reuse concepts may most
readily be applied in the
given environments.

We have confirmed with
actual experience our earlier

assessment that successful

implementation of a reuse
methodology requires thought,
action and management direc-
tion and support throughout
the software life cycle.
This, however, may require a
management reorientation to
the view of software develop-
ment as the acquisition of a
long-lived corporate asset
rather than as only the work
required to produce the
current deliverable [WEGNER84,
YEH85]. Complementing the
reuse efforts being conducted
by the STARS office, which are
targeted at 1long range
objectives, our approach
provides useful tools which
can be utilized immediately.

We have achieved some
success in applying software
reuse. Effective use of the
packages forced us to define
subsets of them which subse-
quently required performance
tuning. This points out the
value of developing a compre-
hensive reuse methodology,
with adequate support tools to
facilitate the development of
efficient systems comprised of
reusable components.

The Ada language and the
methodologies growing up
around it provide a good start
toward achieving larger scale
reuse than we have achieved in
the past. But they are not
enough by themselves. Even
with Ada, there are still

E.1.3.12

plenty of obstacles to reuse.
A management commitment and
desire to improve productivity
when coupled with a compre-
hensive reuse methodology and
the proper tools offer
substantial promise for
improvement.

ACM85

ANDERSONS85

BROIDO85

BURTONS85

IMSL76

RATHGEBERS86

STANDISHS83

WEGNERS85

YEH85

REFERENCE

"Introduction to the CR Classification System,"
Computing Reviews, Vol. 26, No.l. Association
for Computing Machinery, January, 1985, pp. 45-57.

Anderson, C.M. and McNicholl, D.G., "Reusable
Software - A Mission Critical Case Study", AIAA
Computer in Aerospace V Conference, October
21-23, Long Beach, California.

Broido, Michael D., "Software Commonality Study
for Space Station Phase B", Intermetrics Report
IR-CA-029, Intermetrics, Inc., 29 May 1985.

Burton, B.A. and Broido, M.D., "A Phased Approach
to Ada Package Reuse", STARS Workshop on Software
Reuse, April 9-12 1985, Naval Research Laboratory,
Washington, DC 20375-5000.

Reference manual, The International Mathematical &
Statistics Libraries, IMSL, Fall, 1976.

Rathgeber, R.L., "Technical Report on Ada Test and
Analysis Tools", Intermetrics, Inc., Huntington
Beach, California, In Preparation.

Standish, T.A., "Software Reuse", presented at the
ITT Workshop on Reusability in Programming, Rhode
Island, September 7-9, 1983.

Wegner, Peter, "Capital- Intensive Software Tech-

nology," IEEE Software, Vol. 1, No.3, IEEE
Computer Society, July, 1984, pp. 7-45.

Yeh, Dr. Raymond T., "Japanese and Brazilian
Software Technology Initiatives". (Luncheon
address). Published by the NSIA Software Commit-

tee in the Proceedings of the First DOD/Industry

STARS Program Conference, 30 April 1985 - 2 May
1985.

E.1.3.13

